Paper on intelligent virtual prototyping of offshore cranes accepted for ECMS 2015

ECMS_15smallSoftICE members Robin T. Bye and Ottar L. Osen have together with eminent automation student Birger Skogeng Pedersen written a scientific research paper called “A Computer-Automated Design Tool for Intelligent Virtual Prototyping of Offshore Cranes.” The paper has been peer-reviewed and accepted for publication in the Proceedings of the 29th European Conference on Modelling and Simulation (ECMS’15) and will be presented in the Simulators for Virtual Prototyping and Training (SVT) track (chaired by Robin T. Bye and AAUC colleague Vilmar Æsøy) at the conference in Varna, Bulgaria 26-29 May 2015.


Example of an offshore knuckleboom crane.

AAUC researchers have been regular attenders and contributors at ECMS conferences over the years, which have resulted in AAUC chairing several own tracks and even hosting the conference in Ålesund in 2013 (chairs were AAUC staff Webjørn Rekdalsbakken, Robin T. Bye, and Houxiang Zhang), a conference that was honoured to have recent Norwegian Nobel Prize laureate May-Britt Moser as a keynote speaker.

We will make the full paper available when the conference proceedings have been released. In the meantime, we provide the paper abstract below.


The load chart of an offshore crane is a key design criterion.

A Computer-Automated Design Tool for Intelligent Virtual Prototyping of Offshore Cranes

In close collaboration with the maritime industry, virtual prototyping with maritime application has been an important research topic for Aalesund University College for some years. In this paper, we describe the development of a computer-automated design tool for intelligent virtual prototyping of offshore cranes. Our work is part of a research project funded by the Research Council of Norway and takes place in close cooperation with two partners from the maritime industry. A literature review of virtual prototyping, computer-automated design, and modelling and simulation of offshore cranes sets the stage for the description of a design tool whose main components consist of a computational model, a simulator, and a genetic algorithm. We show how domain-specific constraints can be accounted for in conjunction with an automated optimisation procedure of design parameters to yield crane specifications that closely match the desired design criteria. Limitations of slewing rings and hydraulic cylinders are of particular importance in offshore crane design and are used as an example of the multitude of design calculations that form the computational model. Being work in progress, we report on completed parts and the work that remains.

1 thought on “Paper on intelligent virtual prototyping of offshore cranes accepted for ECMS 2015

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s