Undervisningsseminar 27. mars


Automagisk sensur, adaptivt læringsverktøy, og aktiv læring

mandag 27. mars 2017 kl. 10-12

Auditorium Nørvasundet, Hovedbygningen, NTNU i Ålesund

Software and Intelligent Control Engineering (SoftICE) Laboratory ved Institutt for IKT og realfag (IIR) inviterer med dette til åpent seminar om moderne undervisning i høyere utdanning.


10.00 Åpning v/Annik Magerholm Fet, viserektor, NTNU

10.05 System for automatisk individuell faglig begrunnelse og tilbakemelding v/Omid Mirmotahari, førsteamanuensis, Studielaben, Institutt for informatikk, UiO

11.00 Adaptivt læringsverktøy for matematikk v/Siebe van Albada, studieprogramleder simulering og visualisering, IIR, NTNU

11.20 Modelleringsverktøy for dingser v/Adrian Rutle, studiekoordinator informasjonsteknologi, Institutt for data- og realfag, HVL

11.40 Aktiv læring i matematikk v/Hans Georg Schaathun, professor, SoftICE Lab, IIR, NTNU

12.00 Avslutning

Hovedinnlegget holdes av Omid Mirmotahari, som har vunnet en rekke priser for undervisning, forskning og formidling. Nylig har han også figurert i media med innovative “automagiske” system for automatisk individuell faglig begrunnelse og tilbakemelding:

For mer informasjon, kontakt Robin T. Bye på robin.t.bye@ntnu.no eller +47 40082880.

Invitasjon til seminar: Undervisningsseminar2017.pdf

SoftICE presents educational research at CSEDU 2017

SoftICE members Ottar L. Osen and Robin T. Bye and will be presenting two educational research papers at the 9th International Conference on Computer Supported Education (CSEDU 2017) in Porto, Portugal on 21–23 April:

  • Ottar L. Osen and Robin T. Bye. Reflections on teaching electrical and computer engineering courses at the bachelor level. In Proceedings of the 9th International Conference on Computer Supported Education — Volume 2: CSEDU (CSEDU ’17), pages 57–68. INSTICC, SCITEPRESS, April 2017. Download pdf. View Prezi.
  • Robin T. Bye. The teacher as a facilitator for learning: Flipped classroom in a master’s course on artificial intelligence. In Proceedings of the 9th International Conference on Computer Supported Education — Volume 1: CSEDU (CSEDU ’17), pages 184–195. INSTICC, SCITEPRESS, April 2017. Download pdf. View Prezi.

The full papers and other work is available for download here: http://www.robinbye.com | Publications

The paper abstracts are provided below.

Reflections on teaching electrical and computer engineering courses at the bachelor level

This paper reflects on a number of observations the authors have made over many years of teaching courses in electrical and computer engineering bachelor programmes.
We suggest various methods and tips for improving lectures, attendance, group work, and compulsory coursework, and discuss aspects of facilitating active learning, focussing on simple in-classroom activities and larger problem-based activities such as assignments, projects, and laboratory work. Moreover, we identify solving real-world problems by means of practical application of relevant theory as key to achieving intended learning outcomes. Our observations and reflections are then put into a theoretical context, including students’ approaches of learning, constructive alignment, active learning, and problem-based versus problem-solving learning. Finally, we present and discuss some recent results from a student evaluation survey and draw some conclusions.

The teacher as a facilitator for learning: Flipped classroom in a master’s course on artificial intelligence

In this paper, I present a flipped classroom approach for teaching a master’s course on artificial intelligence. Traditional lectures in the classroom are outsourced to an open online course to free up valuable time for active, in-class learning activities. In addition, students design and implement intelligent algorithms for solving a variety of relevant problems cherrypicked from online game-like code development platforms. Learning activities are carefully chosen to align with intended learning outcomes, course curriculum, and assessment to allow for learning to be constructed by the students themselves under guidance by the teacher, much in accord with the theory of constructive alignment. Thus, the teacher acts as a facilitator for learning, much similar to that of a personal trainer or a coach. I present an overview of relevant literature, the course content and teaching methods, and a recent course evaluation, before I discuss some limiting frame factors and challenges with the approach and point to future work.

Opening of Telenor-NTNU AI-Lab and its first Hackathon

The Telenor-NTNU AI-Lab was officially opened on 8 March 2017, when several prominent guests, including Norwegian Minister of Trade and Industry Monica Mæland, Norwegian Minister of Culture Linda Hofstad Helleland, SINTEF CEO Alexandra Bech Gjørv, and Telenor CEO Sigve Brekke, amongst others, joined NTNU rector Gunnar Bovim and head of the Department of Computer Science at NTNU, Letizia Jaccheri for celebration.

Celebrity guests meets Inge, one of the SoftICE Lab’s social robots.

About the AI-Lab

The Telenor-NTNU AI-Lab is a joint lab for research in Artificial Intelligence, Machine Learning, and Big Data Analytics. The lab was established in 2016, and has been formally operative from January 1st, 2017. It is hosted by the Department of Computer Science. The lab will conduct fundamental ML research, including theory and method development, as well as application-oriented research at a high international level. Lab facilities will also be available for other research groups within the Faculty of Information Technology and Electrical Engineering (IE) doing ML research, for NTNU more generally, and for external cooperating partners.

Telenor-NTNU AI-Lab was established as part of Telenor’s vision to help Norway deal with the challenges of an increasing digitized society. The SoftICE Lab intends to be contribute to reaching this goal.


The AI-Lab will host its very first hackathon on the weekend 17-18 March both in Trondheim and at the SoftICE Lab on Campus Ålesund.

If you are a student or employee at NTNU i Ålesund, please contact SoftICE member Ibrahim A. Hameed on Facebook or by email more information.

The hackathon will take place both in Trondheim and on Campus Ålesund. There will be served pizza on Friday and breakfast and lunch on Saturday.

Photos from the opening of the AI-Lab



SoftICE researchers become IEEE Senior Members

SoftICE researchers Ibrahim A. Hameed and Robin T. Bye have in November 2016 and February 2017, respectively, been elevated to the grade of IEEE Senior Member.

IEEE is the world’s largest technical professional organization with more than 420,000 members worldwide in over 160 countries and is dedicated to advancing technology for the benefit of humanity. IEEE produces over 30% of the world’s literature in the electrical and electronics engineering and computer science fields, publishing well over 100 peer-reviewed journals and sponsoring more than 1,600 annual conferences and meetings worldwide. In addition, IEEE is one of the leading standards-making organizations in the world through its IEEE Standards Association, with more than 900 active standards and over 500 standards under development as of 2013, including the IEEE 802.3 Ethernet standard and the IEEE 802.11 Wireless Networking standard.

Upon meeting certain requirements, a professional member can apply for Senior Membership, which is the highest level of recognition that a professional member can directly apply for.

Applicants for Senior Member must have at least three letters of recommendation from Senior, Fellow, or Honorary members and fulfill other rigorous requirements of education, achievement, remarkable contribution, and experience in the field. The Senior Members are a selected group, and certain IEEE officer positions are available only to Senior (and Fellow) Members. Senior Membership is also one of the requirements for those who are nominated and elevated to the grade IEEE Fellow, a distinctive honour.

References: Wikipedia and IEEE